If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+101x+40=0
a = -16; b = 101; c = +40;
Δ = b2-4ac
Δ = 1012-4·(-16)·40
Δ = 12761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(101)-\sqrt{12761}}{2*-16}=\frac{-101-\sqrt{12761}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(101)+\sqrt{12761}}{2*-16}=\frac{-101+\sqrt{12761}}{-32} $
| 2x-1x=9 | | 30=-16x^2+101x+70 | | p=-18/6-15/6 | | −2(x+3)=−2x–6 | | -8/5x+10/4=-11/2 | | -7(4n-7)+4n=26-n | | x+2.8=8.3= | | (2/5)x+5=-9 | | 72/1.5=12/x | | 7m+7m=5m | | -2n-3=1-2n+2n | | 15x=15x+120 | | 108=-4(1+4n) | | 5(x+5)=6(x-3) | | 3(x+6)=x+6 | | 5(x+5)=6(x−3) | | -4(1+x)=92 | | 3-7n-5n=-9 | | (123)6=(12x)3 | | y+6=-6+5 | | -3-5x=-6-4x | | 7x-2=2x+7.25 | | -5=(3x-26)(4) | | 8c-9=7c+9 | | c-7-6=-4 | | 22=1-7k-7 | | 7x-5+3x-8=3x+11 | | m/11=-20/11 | | -16=5w-6 | | 2x+139=17 | | 2x4x=84 | | 2x-139=17 |